首页> 外文OA文献 >Robust computation of linear models by convex relaxation
【2h】

Robust computation of linear models by convex relaxation

机译:凸松弛法对线性模型的鲁棒计算

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Consider a dataset of vector-valued observations that consists of noisyinliers, which are explained well by a low-dimensional subspace, along withsome number of outliers. This work describes a convex optimization problem,called REAPER, that can reliably fit a low-dimensional model to this type ofdata. This approach parameterizes linear subspaces using orthogonal projectors,and it uses a relaxation of the set of orthogonal projectors to reach theconvex formulation. The paper provides an efficient algorithm for solving theREAPER problem, and it documents numerical experiments which confirm thatREAPER can dependably find linear structure in synthetic and natural data. Inaddition, when the inliers lie near a low-dimensional subspace, there is arigorous theory that describes when REAPER can approximate this subspace.
机译:考虑一个矢量值观测值的数据集,该值包含嘈杂的异常值(由低维子空间很好地解释)以及一些异常值。这项工作描述了一个凸优化问题,称为REAPER,可以可靠地将低维模型拟合到此类数据。该方法使用正交投影仪对线性子空间进行参数化,并使用一组正交投影仪的松弛来达到凸公式。本文提供了一种解决REAPER问题的有效算法,并进行了数值实验,证实了REAPER可以可靠地在合成和自然数据中找到线性结构。此外,当线性点位于低维子空间附近时,有一种严格的理论描述了REAPER何时可以近似该子空间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号